PURPOSE Although representing the majority of newly diagnosed cancers, patients with breast cancer appear less vulnerable to COVID-19 mortality compared with other malignancies. In the absence of patients on active cancer therapy included in vaccination trials, a contemporary real-world evaluation of outcomes during the various pandemic phases, as well as of the impact of vaccination, is needed to better inform clinical practice. METHODS We compared COVID-19 morbidity and mortality among patients with breast cancer across prevaccination (February 27, 2020-November 30, 2020), Alpha-Delta (December 1, 2020-December 14, 2021), and Omicron (December 15, 2021-January 31, 2022) phases using OnCovid registry participants (ClinicalTrials.gov identifier: NCT04393974 ). Twenty-eight-day case fatality rate (CFR28) and COVID-19 severity were compared in unvaccinated versus double-dosed/boosted patients (vaccinated) with inverse probability of treatment weighting models adjusted for country of origin, age, number of comorbidities, tumor stage, and receipt of systemic anticancer therapy within 1 month of COVID-19 diagnosis. RESULTS By the data lock of February 4, 2022, the registry counted 613 eligible patients with breast cancer: 60.1% (n = 312) hormone receptor–positive, 25.2% (n = 131) human epidermal growth factor receptor 2–positive, and 14.6% (n = 76) triple-negative. The majority (61%; n = 374) had localized/locally advanced disease. Median age was 62 years (interquartile range, 51-74 years). A total of 193 patients (31.5%) presented ≥ 2 comorbidities and 69% (n = 330) were never smokers. In total, 392 (63.9%), 164 (26.8%), and 57 (9.3%) were diagnosed during the prevaccination, Alpha-Delta, and Omicron phases, respectively. Analysis of CFR28 demonstrates comparable estimates of mortality across the three pandemic phases (13.9%, 12.2%, 5.3%, respectively; P = .182). Nevertheless, a significant improvement in outcome measures of COVID-19 severity across the three pandemic time periods was observed. Importantly, when reported separately, unvaccinated patients from the Alpha-Delta and Omicron phases achieved comparable outcomes to those from the prevaccination phase. Of 566 patients eligible for the vaccination analysis, 72 (12.7%) were fully vaccinated and 494 (87.3%) were unvaccinated. We confirmed with inverse probability of treatment weighting multivariable analysis and following a clustered robust correction for participating center that vaccinated patients achieved improved CFR28 (odds ratio [OR], 0.19; 95% CI, 0.09 to 0.40), hospitalization (OR, 0.28; 95% CI, 0.11 to 0.69), COVID-19 complications (OR, 0.16; 95% CI, 0.06 to 0.45), and reduced requirement of COVID-19–specific therapy (OR, 0.24; 95% CI, 0.09 to 0.63) and oxygen therapy (OR, 0.24; 95% CI, 0.09 to 0.67) compared with unvaccinated controls. CONCLUSION Our findings highlight a consistent reduction of COVID-19 severity in patients with breast cancer during the Omicron outbreak in Europe. We also demonstrate that even in this population, a complete severe acute respiratory syndrome coronavirus 2 vaccination course is a strong determinant of improved morbidity and mortality from COVID-19.