Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers. (Table 1), and seem to work differently depending on the cellular context (47). However, developing any type of LC by deregulation of miRNAs via ER-Estrogen effect is still not entirely clear (8).
miRNAs repression by cigarette smoke in the lungsWe have summarized before the results showing reduced expression levels of miRNAs in various tumors and cancer cell lines, including LC (48). The observation of a global miRNA repression in the lungs of rodents exposed to CS has also been reported (49)(50)(51)(52). Izzotti et al. show in their results the extensive down-regulation of 126 miRNAs in lungs of rats, 4 weeks after CS exposure (49). Such a short-lasting exposure to CS resulted in reversible miRNA alterations, as miRNA down-regulation was considerably attenuated one week after smoking cessation (51). By contrast, the repression of miRNA detected in mice exposed to CS for 4 months still persisted 3 months after smoking cessation, with the progressive development of cancer in the lung, suggesting that long-lasting exposure is needed to induce irreversible miRNA alterations (51,53). In their previous published results, using the same animal model, Izzotti et al. have found that CS up-regulates gene transcription and protein expression (54,55). The authors suggested that the CS-induced down-regulation of miRNA cause oncogene activation and cell proliferation, and that the persistence of these molecular alterations is crucial to commit lung cells towards carcinogenesis (51,53). These results are supported by the study of Schembri et al., who found that most of the differentially expressed miRNAs in the human bronchial airway epithelium were downregulated in smokers and were inversely correlated with their predicted targets (56). The same phenomenon was also observed in alveolar macrophages of smokers, where CS decreased global miRNA expression, while increased their predicted targets (57). In this later study the decrease in global miRNA expression was more pronounced in heavy smokers, suggesting that the magnitude of miRNA repression is related to the extent of smoking history (57).
Anti-estrogenic compounds as attenuators of cigarette smoke effectsStudies suggest that phytochemicals from vegetables and fruits exhibit chemopreventive activities against various types of cancer (58). Izzotti et al. (59) evaluated miRNA expression in the lungs of rats exposed to CS and treated with several cancer chemopreventive agents. Administration of the dietary agents, Phenethyl isothiocyanate (PEITC) and Indole-3-carbi...