Estrogen receptor α (ERα) plays an important role in the onset and progression of breast cancer, whereas p53 functions as a major tumor suppressor. We previously reported that ERα binds to p53, resulting in inhibition of transcriptional regulation by p53. Here, we report on the molecular mechanisms by which ERα suppresses p53's transactivation function. Sequential ChIP assays demonstrated that ERα represses p53-mediated transcriptional activation in human breast cancer cells by recruiting nuclear receptor corepressors (NCoR and SMRT) and histone deacetylase 1 (HDAC1). RNAi-mediated down-regulation of NCoR resulted in increased endogenous expression of the cyclin-dependent kinase (CDK)-inhibitor p21 Waf1/Cip1 (CDKN1A) gene, a prototypic transcriptional target of p53. While 17β-estradiol (E2) enhanced ERα binding to p53 and inhibited p21 transcription, antiestrogens decreased ERα recruitment and induced transcription. The effects of estrogen and antiestrogens on p21 transcription were diametrically opposite to their known effects on the conventional ERE-containing ERα target gene, pS2/TFF1. These results suggest that ERα uses dual strategies to promote abnormal cellular proliferation: enhancing the transcription of ERE-containing proproliferative genes and repressing the transcription of p53-responsive antiproliferative genes. Importantly, ERα binds to p53 and inhibits transcriptional activation by p53 in stem/progenitor cell-containing murine mammospheres, suggesting a potential role for the ER-p53 interaction in mammary tissue homeostasis and cancer formation. Furthermore, retrospective studies analyzing response to tamoxifen therapy in a subset of patients with ER-positive breast cancer expressing either wild-type or mutant p53 suggest that the presence of wild-type p53 is an important determinant of positive therapeutic response.nuclear receptor corepressor | mammary epithelial cells | mammospheres | tumor suppressor protein | tamoxifen therapy