Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66 shc , two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro. We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.Age-related loss of bone mass and strength is an invariable feature of human biology, affecting women and men alike. Moreover, population-based studies demonstrate that substantial bone loss begins as early as the 20s in young adult women and men, long before any hormonal changes (1).3 The extent to which estrogen deficiency contributes to age-related bone loss and the slower rate of decline of bone mass and strength during the late postmenopausal years, and the molecular and cellular mechanisms of such putative interactions, are unknown.The universality of age-associated bone loss irrespective of sex steroid status notwithstanding, age is by far a more critical determinant of fracture risk than bone mass in humans indicating that age-related increase in fracture risk reflects a loss of bone strength that is only partly accounted for by loss of bone mass (2). Whereas an increased propensity to fall due to agerelated decline in neuromuscular function is a factor, there are also age-related changes in the bone itself. Such changes include disrupted architecture, altered composition of the bone mineral and matrix, delayed repair of fatigue microdamage, excessive turnover, and inadequate bone size (3-7). The most recently appreciated qualitative factor is loss of osteocytes (8, 9), former osteoblasts entombed into the mineralized matrix. Osteocyte death may influence the signals necessary for mechanical adaptation and repair and also lead to long term changes in bone hydration. The anti-apoptotic effect of sex steroids on osteocytes, which has been well documented in mice, rats, and humans (10 -12), may contribute to their anti-fracture efficacy independently of...