Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells ( The inhibitory effect of estrogen on the development of atherosclerosis has been suggested by abundant human epidemiological and animal experimental data (1-9). The incidence of atherosclerotic diseases is lower in premenopausal women than in men, steeply rises in postmenopausal women, and is reduced to premenopausal levels in postmenopausal women who receive estrogen therapy (10 -12). Until recently, the atheroprotective effects of estrogen were attributed principally to the effects on serum lipid concentrations. However, estrogeninduced alterations in serum lipids account for only approximately one-third of the observed clinical benefits of estrogen (12)(13)(14). Recent evidence suggests that the direct actions of estrogen on blood vessels contribute to the cardioprotective effects of estrogen (13, 15). There are many kinds of direct effects of estrogen on blood vessels, such as estrogen-induced increases of vasodilatation and inhibition of the response of blood vessels to injury and the development of atherosclerosis. However, the molecular mechanism underlying the estrogeninduced vasodilatation has not yet been determined. Several studies suggest that a key mediator of this vasodilator response could be the endothelium-derived relaxing factor nitric oxide (NO), and that brief treatment with estrogen increases basal NO release in endothelial cells without elevation of eNOS mRNA or protein (16). Estrogen activates endothelial nitric oxide synthase (eNOS) without altering expression of the eNOS gene in vascular endothelium (17)(18)(19)(20). However, the details of the mechanism of the estrogen-induced eNOS activation are not yet well understood.The serine/threonine kinase termed Akt or protein kinase B (PKB) 1 is an important regulator of various cellular processes, including glucose metabolism and cell survival (21, 22). Activation of receptor tyrosine kinases and G-protein-coupled receptors, and stimulation of cells by mechanical force, can lead to the phosphorylation and activation of . Akt was identified as a downstream component of survival signaling through phosphatidylinositol 3-kinase (PI3K) (26 -30). Akt may be regulated by both phosphorylation and the direct binding of PI3K lipid products to the Akt pleckstrin homology domain. Akt can then phosphorylate substrates such as glycogen synthase kinase-3, 6-phosphofructo-2-kinase, and BAD. More recently, it was found that eNOS is also an Akt substrate and is activated by Akt-dependent phosphorylation to release NO in endothelial cells (31-34).The actions of estrogen can be mediated by the classical nuclear receptors, ER␣ and ER (35,36) or through other putative membrane receptors. By definition, rapid effects of estrogen that involve nongenomic mechanisms are independent of transcriptional activation by the nuclea...