2019
DOI: 10.4995/riai.2019.11078
|View full text |Cite
|
Sign up to set email alerts
|

Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales

Abstract: ResumenLas imágenes hiperespectrales constituyen el núcleo de varios programas de observación remota de la Tierra. La cantidad de información que contienen estas imágenes, formadas por cientos de canales espectrales estrechos y casi continuos, resulta de gran utilidad en aplicaciones en las que la caracterización de los materiales observados en la superficie terrestre resulta de gran relevancia. Esto se debe a la posibilidad de caracterizar de forma inequívoca cada material a través de su firma espectral. Algu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 16 publications
(8 citation statements)
references
References 50 publications
0
7
0
1
Order By: Relevance
“…They are measuring green vegetation through a normalized ratio ranging from -1 to 1. ( Paoletti et al, 2019 ; Moriarty et al, 2019 ).…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…They are measuring green vegetation through a normalized ratio ranging from -1 to 1. ( Paoletti et al, 2019 ; Moriarty et al, 2019 ).…”
Section: Methodsmentioning
confidence: 99%
“…The main developments carried out with multispectral cameras are based on the vegetative analysis of plant growth, using NDVI indices, which have been shown to provide relevant information for making decisions in fertilization applications. ( Paoletti et al, 2019 ; Cardim Ferreira Lima et al, 2020 ; Lu et al, 2020 ; Zhou et al, 2021 ).…”
Section: Introductionmentioning
confidence: 99%
“…Traditionally, HSI information has been exploited in machine learning (ML) by pixel-wise methods which consider HSI data as a list of spectral vectors, assuming that each pixel is pure and typically labeled as a single land cover type [32]- [34]. In the current literature, there are abundant pixelwise methods, such as the popular support vector machines (SVMs) [35], [36], K-nearest neighbor (KNN) [37], [38], multinomial logistic regression (MLR) [39], [40], random forests (RFs) [41], [42] and standard artificial neural networks (ANNs) [43], among others.…”
Section: A Traditional Machine Learning Methods For Spectral-spatialmentioning
confidence: 99%
“…We propose a one-dimensional convolutional neural network (1D CNN) to merge data from several sensors. A 1D convolutional layer is used as an input to our model in order to reduce the number of network connections and to process all information together [30]. This layer receives an input data array with a shape of C channels and a sliding window length of L time steps.…”
Section: A Deep Learning Approach For Fusing Sensor Datamentioning
confidence: 99%