Poly (lactic acid) (PLA) is widely known as a biodegradable alternative to traditional polymers from non-renewable sources and is also bioabsorbable and biocompatible.However, its mechanical properties are below the market's need, requiring changes that increase its ductility and toughness. Studies with PLA and poly (ε-caprolactone) blends (PCL) show that when compatible, these blends can overcome the mechanical limitations of PLA, with high potential to be used in new applications. In this work, multiblock copolymers derived from ε-caprolactone and tetrahydrofuran, with different molar masses, were synthesized via condensation reaction. The compatibilizing effect of these copolymers in immiscible blends of PLA / PCL with 75/20% (mass%) composition was investigated. Binary and ternary polymer blends were prepared from the molten state in a single screw extruder, followed by injection of specimens for thermal, morphological and mechanical evaluation. Although the thermal analyzes do not indicate significant variations in Tg and Tm, the morphology and mechanical properties obtained allow us to conclude that the presence of the copolymer alters the interfacial tension, favoring the interfacial adhesion between the PCL drops and the PLA matrix, suggesting the existence of an ideal limit of the molar mass of the copolymer according to the viscosity ratio between components of the blend and copolymer. The high viscosity PLA showed better mechanical properties (impact toughness, tensile strength and flexion) and more responsive to the average PCL droplet size when compared to the low viscosity PLA.