Fibrotic diseases are a significant global burden for which there are limited treatment options. The effector cells of fibrosis are activated fibroblasts called myofibroblasts, a highly contractile cell type characterized by the appearance of α-smooth muscle actin stress fibers. The underlying mechanism behind myofibroblast differentiation and persistence has been under much investigation and is known to involve a complex signaling network involving transforming growth factor-β, endothelin-1, angiotensin II, CCN2 (connective tissue growth factor), and platelet-derived growth factor. This review addresses the contribution of these signaling molecules to cardiac fibrosis.