Abstract:Étale difference algebraic groups are a difference analog of étale algebraic groups. Our main result is a Jordan-Hölder type decomposition theorem for these groups. Roughly speaking, it shows that any étale difference algebraic group can be build up from simple étale algebraic groups and two finite étale difference algebraic groups. The simple étale algebraic groups occurring in this decomposition satisfy a certain uniqueness property.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.