Many studies have used voluntary ethanol consumption by animals to assess the influence of genetic and environmental manipulations on ethanol drinking. However, the relationship between home cage ethanol consumption and more formal assessments of ethanol-reinforced behavior using operant and instrumental conditioning procedures is not always clear. The present review attempted to evaluate whether there are consistent correlations between mouse and rat home cage ethanol drinking on the one hand, and either operant oral self-administration (OSA), conditioned taste aversion (CTA) or conditioned place preference (CPP) with ethanol on the other. We also review literature on intravenous ethanol self-administration (IVSA). To collect data, we evaluated a range of genetic manipulations that can change both genes and ethanol drinking behavior including selective breeding, transgenic and knock-out models, and inbred and recombinant inbred strain panels. For a genetic model to be included in the analysis, there had to be published data resulting in differences on home cage drinking and data for at least one of the other behavioral measures. A consistent, positive correlation was observed between ethanol drinking and OSA, suggesting that instrumental behavior is closely genetically related to consummatory and ingestive behavior directed at ethanol. A negative correlation was observed between CTA and drinking, suggesting that ethanol's aversive actions may limit oral consumption of ethanol. A more modest, positive relationship was observed between drinking and CPP, and there were not enough studies available to determine a relationship with IVSA. That some consistent outcomes were observed between widely disparate behavioral procedures and genetic populations may increase confidence in the validity of findings from these assays. These findings may also have important implications when researchers decide which phenotypes to use in measuring alcohol-reward relevant behaviors in novel animal models.