BackgroundSugarcane bagasse (SCB) is one of the most promising lignocellulosic biomasses for use in the production of biofuels. However, bioethanol production from pure SCB fermentation is still limited by its high process cost and low fermentation efficiency. Sugarcane molasses, as a carbohydrate-rich biomass, can provide fermentable sugars for ethanol production. Herein, to reduce high processing costs, molasses was integrated into lignocellulosic ethanol production in batch modes to improve the fermentation system and to boost the final ethanol concentration and yield.ResultsThe co-fermentation of pretreated SCB and molasses at ratios of 3:1 (mixture A) and 1:1 (mixture B) were conducted at solid loadings of 12% to 32%, and the fermentation of pretreated SCB alone at the same solid loading was also compared. At a solid loading of 32%, the ethanol concentrations of 64.10 g/L, 74.69 g/L, and 75.64 g/L were obtained from pure SCB, mixture A, and mixture B, respectively. To further boost the ethanol concentration, the fermentation of mixture B (1:1), with higher solid loading from 36 to 48%, was also implemented. The highest ethanol concentration of 94.20 g/L was generated at a high solid loading of 44%, with an ethanol yield of 72.37%. In addition, after evaporation, the wastewater could be converted to biogas by anaerobic digestion. The final methane production of 312.14 mL/g volatile solids (VS) was obtained, and the final chemical oxygen demand removal and VS degradation efficiency was 85.9% and 95.9%, respectively.ConclusionsMolasses could provide a good environment for the growth of yeast and inoculum. Integrating sugarcane molasses into sequential cellulosic biofuel production could improve the utilization of biomass resources.