Olefin was produced with a non-conventional method using an electric field exerted on zeolites. The lattice oxygen mobility increases with a decrease in band gap, leading to an increase in olefin yield. By impregnating the transition metal, an increase in carrier concentration occurs. The external electric field changes the Fermi level. In this research, HZSM-5 was placed in an external DC electric field with strength appropriate for studying its catalytic performance. The Fermi level changed with the metal type and the external electric field. The increase in permittivity with temperature extracts higher energy from the external electric field. In catalytic reactions assisted by the external DC electric field, at 510 • C, the yield was approximately equal to the yield in a conventional reaction at 650 • C. With regard to TGA, in the catalytic reaction assisted by the external DC electric field, the produced coke declined. The results showed that the maximum yield value (50.54%) and conversion (92.81%) were be obtained at 650 • C with an input electrical current of 12 mA, a gap distance of 10 mm and a metal loading of 4 wt. % over FeHZSM-5.