Officinal plants are a source of metabolites whose chemical composition depends on pedoclimatic conditions. In this study, the NMR-based approach was applied to investigate the impacts of different altitudes and agronomical practices (Land, Mountain Spontaneous, and Organically Grown Ecotypes, namely LSE, MSE, and OE, respectively) on the metabolite profiles of Burdock root, Dandelion root and aerial part, and Lemon balm aerial part. Sugars, amino acids, organic acids, polyphenols, fatty acids, and other metabolites were identified and quantified in all samples. Some metabolites turned out to be tissue-specific markers. Arginine was found in roots, whereas myo-inositol, galactose, glyceroyldigalactose moiety, pheophytin, and chlorophyll were identified in aerial parts. Caftaric and chicoric acids, 3,5 di-caffeoylquinic acid, and chlorogenic and rosmarinic acids were detected in Dandelion, Burdock and Lemon balm, respectively. The metabolite amount changed significantly according to crop, tissue type, and ecotype. All ecotypes of Burdock had the highest contents of amino acids and the lowest contents of organic acids, whereas an opposite trend was observed in Lemon balm. Dandelion parts contained high levels of carbohydrates, except for the MSE aerial part, which showed the highest content of organic acids. The results provided insights into the chemistry of officinal plants, thus supporting nutraceutical–phytopharmaceutical research.