The success of biobank-based genomic research is widely dependent on people's willingness to donate their tissue. Thus, stakeholders' opinions should be considered in the development of best practice guidelines for research and recruiting participants. We systematically analyzed the empirical literature describing different stakeholders' views towards ethical questions with regard to type of consent, data sharing and return of incidental findings. Patients are more open to one-time general consent than the public. Only a small proportion desires recontact if the research aim changed. A broad consent model would prevent only a small proportion of patients from participating in research. Although professionals are concerned about a risk of reidentification, patients and the public support data sharing and find that the benefit of research outweighs the potential risk of reidentification. However, they desire detailed information about the privacy protection measures. Regarding the return of incidental findings, the public and professionals focus on clinically actionable results, whereas patients are interested in receiving as much information as possible. For professionals, concrete guidelines that help managing the return of incidental findings should be warranted. For this it would be helpful addressing the different categories -actionable, untreatable and inheritable diseases -upfront with patients and public. European Journal of Human Genetics (2015Genetics ( ) 23, 1607Genetics ( -1614 doi:10.1038/ejhg.2015; published online 4 March 2015
INTRODUCTIONTechnical advances in whole-genome sequencing enable the identification of genomic variations involved in the development of diseases, such as acquired mutations that are causally linked to cancer. 1,2 Improvements in disease prevention as well as diagnostic and therapeutic strategies may eventually lead to more precise, individually stratified health care. As most diseases are complex, which means that they are caused by multiple genomic factors, research is often based on large numbers of samples representing large numbers of individuals to arrive at statistically significant conclusions. In addition, genetic susceptibility alone is not sufficient to induce a complex disease; the causes also include different lifestyle and environmental factors. Therefore, to study complex diseases the interplay of all of these factors has to be considered. An efficient tool to achieve this is the creation of biobanks. Biobanks are defined as organized collections of human biological specimens comprised of cells, tissues, blood or DNA, which could be linked to clinical data and detailed individual lifestyle. Biobanks vary with respect to types and sources of samples and size, as well as research focus. Biobanks can be disease-specific or population-based, ranging from small collections to large-scale repositories. [3][4][5][6][7] Linking biological materials to personal data for enabling biobankbased genomic research raises several ethical questions that are currently debated. Th...