While the retrieval of datasets from human subjects based on demographic characteristics such as gender or race is an ability with wide-ranging application, it remains poorly-studied. In contrast, a large body of work exists in the field of biometrics which has a different goal: the recognition of human subjects. Due to this disparity of interest, existing methods for retrieval based on demographic attributes tend to lag behind the more well-studied algorithms designed purely for face matching. The question this raises is whether a face recognition system could be leveraged to solve these other problems and, if so, how effective it could be. In the current work, we explore the limits of such a system for gender and ethnicity identification given (1) a ground truth of demographically-labeled, textureless 3-D models of human faces and (2) a state-of-the-art facerecognition algorithm. Once trained, our system is capable