Rosmarinus officinalis, also named rosemary, is a native plant from the Mediterranean region that is useful for the treatment of inflammatory diseases. Studies using experimental models and/or in vitro tests have shown the important biological effects of rosemary. In this context, the mechanism of the anti-inflammatory activity of rosemary must be investigated to support the discovery of new substances with anti-inflammatory effects. The aim of the present study was to investigate the anti-inflammatory effects of crude extract oil free obtained from the leaves of rosemary in an animal model of inflammation, thus evaluating its medicinal use for the treatment of inflammatory conditions. Also its ethanol, hexane, and ethyl acetate fractions, as well as its isolated compounds carnosol and rosmarinic acid were analyzed. Swiss mice were used for the in vivo experiments. The effect of this herb on the inhibition of the leukocytes, exudation, myeloperoxidase, and adenosine-deaminase activities, nitrite/nitrate, interleukin 17A, and interleukin 10 levels and mRNA expression was determined. The crude extract and its derived fractions, in addition to its isolated compounds, inhibited leukocytes and decreased exudation and myeloperoxidase and adenosine-deaminase activities, as well as nitrite/nitrate and interleukin 17A levels and mRNA expression, besides increasing interleukin 10 levels and mRNA expression. Rosemary showed important anti-inflammatory activity by inhibiting leukocytes and decreasing exudation. These effects were associated with a decrease in the proinflammatory parameters (myeloperoxidase, adenosine-deaminase, nitrite/nitrate, and interleukin 17A) and an increase in the anti-inflammatory cytokine (interleukin 10). This study confirms the anti-inflammatory properties of rosemary and validates its use in folk medicine to treat inflammatory diseases such as rheumatism and asthma.