Generally, Asteraceae flowers such as chrysanthemums and gerberas, are low ethylene-sensitive and do not exhibit petal wilting and abscission. However, previous research found that the flowers of dahlia, an Asteraceae member belonging to the tribe Coreopsideae, are ethylene-sensitive and show abscission layer development in petal-ovary boundaries. In this study, we investigated the ethylene sensitivity of 17 ornamental Asteraceae species belonging to different tribes by measuring the petal drawing resistance and vase life after 1-3 μL•L −1 ethylene exposure for 20 h. Although more than half of the tested species did not respond to ethylene, several species showed ethylene-sensitive petal wilting and abscission of fresh ray florets. Ethylenesensitive petal wilting occurred in only two species (Calendula officinalis L. and Osteospermum L.) of the tribe Calenduleae, while ethylene-sensitive petal abscission occurred mainly in six species (Bidens ferulifolia D.C., Coreopsis lanceolata L., Cosmos atrosanguineus (Hook) Voss., Cosmos bipinnatus Cav., Cosmos sulphureus Cav. and Dahlia Cav.) of tribe Coreopsideae and one species (Helianthus annuus L.) of the tribe Heliantheae. In these species, abscission petals maintained their turgidity, and this process could be detected by measuring the petal drawing resistance of the ray florets. The reduction in petal drawing resistance, associated with abscission layer development in the petal-ovary boundaries, was observed only in these ethylene-sensitive species. The results of this study suggest that the ethylene sensitivity and petal senescing patterns in Asteraceae flowers may be associated with the phylogenetic classification at the tribe level.