The photoelectric characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films significantly affect the power conversion efficiency and stability of Si/PEDOT:PSS hybrid solar cells. In this paper, we investigated PEDOT:PSS modification with alcohol ether solvents (dipropylene glycol methyl ether (DPM) and propylene glycol phenyl ether (PPH)). The reduction of PSS content and the transformation of the PEDOT chain from benzene to a quinone structure in PEDOT:PSS induced by doping with DPM or PPH are the reasons for the improved conductivity of PEDOT:PSS films. DPM and PPH doping improves the quality of silicon with the PEDOT:PSS heterojunction and silicon surface passivation, thereby reducing the surface recombination of charge carriers, which improves the photovoltaic performance of Si/PEDOT:PSS solar cells. Comparing the power conversion performance (PCE) and air stability of Si/PEDOT:PSS solar cells with DPM (13.24%), DPH (13.51%), ethylene glycol (EG, 13.07%), and dimethyl sulfoxide (DMSO, 12.62%), it is suggested that doping with DPM and DPH can replace DMSO and EG to enhance the performance of Si/ PEDOT:PSS solar cells. The EG and DMSO solvents not only have a certain toxicity to the human body but also are not environmentally friendly. In comparison to DMSO and EG, DPM and DPH are more economical and environmentally friendly, helping to reduce the manufacturing cost of Si/PEDOT:PSS solar cells and making them more conducive to their commercial applications.