Linear α-olefins (LAOs) are linear alkenes with double bonds at the ends of the molecular chains. LAOs with different chain lengths can be widely applied in various fields. Ethylene oligomerization has become the main process for producing LAOs. In this review, different homogeneous or heterogeneous catalysts recently reported in ethylene oligomerization with Ni, Fe, Co, Cr, etc., as active centers will be discussed. In the homogeneous catalytic system, we mainly discuss the effects of the molecular structure and the electronic and coordination states of complexes on their catalytic activity and selectivity. The Ni, Fe, and Co homogeneous catalysts are discussed separately based on different ligand types, while the Cr-based homogeneous catalysts are discussed separately for ethylene trimerization, tetramerization, and non-selective oligomerization. In heterogeneous catalytic systems, we mainly concentrate on the influence of various supports (metal–organic frameworks, covalent organic frameworks, molecular sieves, etc.) and different ways to introduce active centers to affect the performance in ethylene oligomerization. Finally, a summary and outlook on ethylene oligomerization catalysts are provided based on the current research. The development of highly selective α-olefin formation processes remains a major challenge for academia and industry.