The versatile properties of bipolar organic electrode materials have attracted considerable attention in the field of electrochemical energy storage (EES). However, their practical application is hindered by their inherent limitations including low intrinsic electrical conductivity, low specific capacity, and high solubility. Herein, a bipolar organic molecule combining both porphyrin and ferrocene moieties (CuDEFcP) [5,15‐bis(ethynyl)‐10,20‐di ferrocenyl porphinato]copper(II)) has been developed. It is proposed as a new organic electrode material with multifunctional application for rechargeable organic lithium‐based batteries (ROLBs) and dual‐ion organic symmetric batteries (SDIBs). Superior performance was delivered as cathode material in lithium based dual‐ion batteries (LDIBs), with a high initial discharge capacity of 300 mAh. g‐1 at 0.2 A. g‐1 and a reversible capacity of 58 mAh. g‐1 after 5000 cycles at 1 A. g‐1. However, employing it as an anode material in lithium‐ion batteries (LIBs), a reversible capacity of 295 mAh. g−1 at 0.2 A. g‐1 was delivered. In SDIBs, in which CuDEFcP is used as both anode and cathode, an average discharge voltage of 2.4 V and an energy density of 261 Wh.kg‐1 were achieved.