A pairwise comparison of the nucleic acid sequence of 168 bases from 152 wild-type or unique cell cultureadapted strains of hepatitis A virus (HAV) revealed that HAV strains can be differentiated genetically into seven unique genotypes (I to VII). In general, the nucleotide sequence of viruses in different genotypes differs at 15 to 25 % of positions within this segment of the genome. Viruses from four of the genotypes (I, II, III and VII) were recovered from cases of hepatitis A in humans, whereas viruses from the other three genotypes (IV, V and VI) were isolated only from simian species developing a hepatitis A-like illness during captivity. Among non-epidemiologically related human HAV strains, 81 were characterized as genotype I, and 19 as genotype III. Within each of these major genotypes, there were two distinct groups (subgenotypes), which differed in sequence at approximately 7-5 % of base positions. Each genotype and subgenotype has a characteristic amino acid sequence in this region of the polyprotein, with the most divergent genotypes differing at 10 of 56 residues. Strains recovered from some geographical regions belonged to a common (endemic) genotype, whereas strains from other regions belonged to several, probably imported, genotypes. Thus, HAV strains recovered in North America were for the most part closely related at the nucleotide sequence level, whereas in other regions, such as Japan and Western Europe, HAV strains were derived from multiple genotypes or sub-genotypes. These data indicate that patterns of endemic transmission can be differentiated from situations in which infections are imported due to travel.