Enteric fever caused by Salmonella enterica is a life-threatening systemic illness of gastrointestinal tract especially in tropical countries. Antimicrobial therapy is generally indicated but resistance towards commonly used antibiotics has limited their therapeutic usefulness. Therefore, we aimed to determine the antimicrobial susceptibility pattern by minimum inhibitory concentration method of common therapeutic regimens against Salmonella enterica from enteric fever clinical cases. Salmonella enterica clinical isolates recovered from the patients with suspected enteric fever whose blood samples were submitted to microbiology laboratory of Manmohan Memorial Community Hospital, Kathmandu, from March 2016 to August 2016, were studied. These isolates were subjected to antimicrobial susceptibility testing against common therapeutic antimicrobials by Kirby-Bauer disk diffusion method. The minimum inhibitory concentration of ciprofloxacin, azithromycin, chloramphenicol, and cefixime was determined by Agar dilution method based on the latest CLSI protocol. A total of 88 isolates of Salmonella enterica were recovered from blood samples of enteric fever cases. Out of them, 74 (84.09%) were Salmonella Typhi and 14 (15.91%) were Salmonella Paratyphi A. On Kirby-Bauer disk diffusion antimicrobial susceptibility testing, entire isolates were susceptible to cotrimoxazole, cefixime, ceftriaxone, azithromycin, and chloramphenicol. Sixty-four (72.7%) Salmonella enterica isolates were nalidixic acid resistant and nonsusceptible to ciprofloxacin and levofloxacin. On MIC determination, four Salmonella isolates were ciprofloxacin resistant with MIC 1 µg/ml and two isolates were ciprofloxacin intermediate with MIC 0.5 µg/ml. The MIC range of azithromycin was from 0.125 µg/ml to 2.0 µg/ml, whereas that for chloramphenicol was 2.0 µg/ml–8.0 µg/ml and for cefixime was 0.0075–0.5 µg/ml, respectively. Despite global surge of antimicrobial resistance among Salmonella enterica clinical isolates, the level of drug resistance in our study was not so high. However, higher level of NARST strains limits therapeutic use of fluoroquinolones and necessitates the routine monitoring of such resistance determinants in order to effectively and rationally manage enteric fever cases.