Normal or elevated selenium status of broilers, which is influenced by dietary selenium sources, improves the bird's ability to overcome the adverse effects of reactive oxygen metabolites. The objective of this study was to evaluate the effects of feeding graded levels of peroxidized poultry fat on blood and hepatic glutathione peroxidase (GSH-Px), and hepatic glutathione reductase activity in broiler chickens fed either inorganic sodium selenite (SEL) or organic selenium enriched in the organic selenium yeast product Sel-Plex (SP). Nine starter diets, varying in levels of oxidized fat (0, 3, and 6 mEq/kg) and dietary selenium sources, were fed to 360 male chicks from hatch to 21 d of age. Sel-Plex or SEL was added to the basal diet to provide either 0 or 0.2 ppm of supplemental selenium in the diets. Blood and hepatic samples were obtained for each treatment group at 21 d of age. Neither peroxidized fat nor selenium source significantly altered the activity of hepatic glutathione reductase (P ≤ 0.05). Blood GSH-Px was influenced significantly by both fat and selenium source (P ≤ 0.05), but the fat × selenium source interaction was not significant (P ≥ 0.3). A selenium source effect on the hepatic GSH-Px activity (P ≤ 0.05) was evidenced by higher GSH-Px activity, even in the basal diet with no added peroxidized fat. An increase in GSH-Px activity was seen in the erythrocyte and hepatic samples in both the SEL and SP treatments when peroxidized fat was given at 3 mEq/ kg, but in the erythrocytes and in the hepatic tissues from SEL-supplemented birds, there was an apparent inhibition of GSH-Px activity. This inhibition was not seen in the hepatic tissue samples from SP-fed birds. Because elevated GSH-Px activity is indicative of oxidative stress, it was concluded that dietary SP supplementation resulted in better selenium and redox status in broilers than did SEL. These results indicate that the dietary selenium supplied in an organic form (selenium yeast as SP) improved the selenium and redox status in broilers, leading to greater resistance to oxidative stress than when the inorganic form of selenium (SEL) was fed.