Esta tesis se dedica en un estudio de estabilidad no lineal de la morfodinàmica de la zona de rompientes de playas de arena. El modelo numérico MORFO55 resuelve las ecuaciones de aguas someras no lineales para la hidrodinámica y actualiza la topografía a partir del transporte de sedimento. En primer lugar, se aplica en el caso de playas complejas longitudinalmente no uniformes con objeto de probar sus distintas formulaciones. En secundo lugar, se usa para estudiar la generación de estructuras rítmicas en playas longitudinalmente uniformes. Entre estos patrones se distinguen las barras transversales y oblicuas, las barras crescenticas y los sistemas de barras/surcos (ridges/runnels). La hipótesis de que emergen a partir de inestabilidades internas del acoplamiento entre la topografía y la hidrodinámica se investiga. Los estudios previos de modelización numérica se limitaban a las etapas iniciales de la generación de las barras. En particular, mostraban que las barras transversales y oblicuas pueden formarse en playas planas mientras que las barras crecenticas aparecen en playas con barra. La formación de los sistemas de barras/surcos se explica con modelos conceptuales de la observación mediante satélite según los cuales emergerán a partir de la deformación de la barra intermareal. Esta tesis estudia el régimen no lineal de la evolución de todos estos sistemas. Particularmente se obtiene un estado 'nal de equilibrio. Los resultados generales coinciden cualitativamente con las barras observadas en la naturaleza. Se da una interpretación física de la formación, de la evolución y de la saturación del crecimiento de las barras.
This thesis performs a nonlinear stability study of the surf zone morphodynamics of sandy beaches. To this end the MORFO55 model based on a wave and depth averaged nonlinear shallow water equations solver with wave driver, sediment transport and bed updating is presented. It is first applied to complex longitudinally non-uniform beaches in order to test different model formulations. Second, it is applied to study the generation of surf zone rhythmic features on alongshore uniform beaches. Shore-attached transverse or oblique bars, crescentic bars and ridge and runnel systems are well known examples of such features. The hypothesis that they emerge by self organisation of the coupling between topography, waves and currents is here tested. In absence of shore-parallel bars, the initial formation of transverse and oblique bars had been shown by previous modelling studies of linear stability analysis but is now extended to the finite amplitude regime. In most of barred beaches, crescentic bars and ridge and runnel systems appear. Conceptual models based on field observations suggest that ridges and runnels could emerge by the deformation of the alongshore intertidal bar intercepted by crescentic bars. Up to now, only the formation of crescentic bars had numerically succeeded with linear and non linear models. This study shows that a dynamical equilibrium state of each of these rhythmic bar systems may be described with a numerical model. General results are in qualitative agreement with the bar systems observed in nature. A physical explanation for their formation, their evolution and the saturation of their growth is given.