The next frontier for immersive applications is enabling sentience over the Internet. Tactile Internet (TI) envisages transporting skills by providing Ultra-Low Latency (ULL) communications for transporting touch senses. In this work, we focus our study on the first/last mile communication, where the future generation WiFi-7 is pitched as the front-runner for ULL applications. We discuss a few candidate features of WiFi-7 and highlight its major pitfalls with respect to ULL communication. Further, through a specific implementation of WiFi-7 (vanilla WiFi-7) in our custom simulator, we demonstrate the impact of one of the pitfalls -standard practice of using jitter buffer in conjunction with frame aggregation -on TI communication. To circumvent this, we propose Non-Buffered Scheme (NoBuS) -a simple MAC layer enhancement for enabling TI applications on WiFi-7. NoBuS trades off packet loss for latency enabling swift synchronization between the master and controlled domains. Our findings reveal that employing NoBuS yields a significant improvement in RMSE of TI signals. Further, we show that the worst-case WiFi latency with NoBuS is 3.72 ms -an order of magnitude lower than vanilla WiFi-7 even under highly congested network conditions.