The solid solution Yb(x)Ca(1-x)C2 (0 ≤ x ≤ 1) was synthesized by reaction of the elements at 1323 K. The crystal structures within this solid solution, as elucidated from synchrotron powder diffraction data, depend on x and exhibit some interesting features that point to a structure dependent valence state of Yb. Compounds with x ≥ 0.75 crystallize in the tetragonal CaC2 type structure (I4/mmm, Z = 2) and obey Vegard's law; for x ≤ 0.75 the monoclinic ThC2 type structure (C2/c, Z = 4) is found, which coexists with the monoclinic CaC2-III type structure (C2/m, Z = 4) for x ≤ 0.25. The monoclinic modifications show a strong deviation from Vegard's law. Their unit cell volumes are remarkably larger than expected for a typical Vegard system. HERFD-XANES spectroscopic investigations reveal that different Yb valence states are responsible for the observed volume anomalies. While all tetragonal compounds contain mixed-valent Yb with ∼75% Yb(3+) (similar to pure YbC2), all monoclinic modifications contain exclusively Yb(2+). Therefore, Yb(x)Ca(1-x)C2 is a very rare example of a Yb containing compound showing a strong structure dependence of the Yb valence state. Moreover, temperature dependent synchrotron powder diffraction, neutron TOF powder diffraction, and HERFD-XANES spectroscopy experiments reveal significant Yb valence changes in some compounds of the Yb(x)Ca(1-x)C2 series that are induced by temperature dependent phase transitions. Transitions from the tetragonal CaC2 type structure to the monoclinic ThC2 or the cubic CaC2-IV type structure (Fm3m, Z = 4) are accompanied by drastic changes of the mean Yb valence from ∼2.70 to 2.0 in compounds with x = 0.75 and x = 0.91. Finally, the determination of lattice strain arising inside the modifications with ordered dumbbells (ThC2 and CaC2 type structures) by DSC measurements corroborated our results concerning the close relationship between crystal structure and Yb valence in the solid solution Yb(x)Ca(1-x)C2.