High-purity fluorene is widely used in optoelectronic materials, biology, medicine, and other fields. It is a kind of industrial chemical with high added value. In this paper, zone melting purification technology was used to study the purification effect of fluorene on the zone travel rate, the zone length, the zone passing number, and the zone temperature difference. The concentration distribution of fluorene and the impurities 2-methylbiphenyl, 4-methylbiphenyl, 4-methyldibenzofuran, and dibenzofunan along the moving direction of the melting zone was obtained. A one-pass zone refining model of fluorene was established; the effective distribution coefficients of the four impurities above were obtained via mathematical software fitting; and the equilibrium distribution coefficients were further calculated, which were 0.2441, 0.5850, 0.2377, and 0.3497, respectively. The k0 of all impurities was less than 1. The purification effect of fluorene can be improved by using a larger zone length in the initial zone melting purification process, a smaller zone travel rate in the whole zone melting purification process, multiple zone melting purification processes, and a larger zone temperature difference. After four zone melting purification processes, the purity of fluorene increased from 97.62% to 99.08%, which was nearly 1.5% higher than the initial purity of fluorene. Zone melting purification technology provides a new idea for the preparation of high-purity fluorene.