Background: Essential oils (EOs) have shown antimicrobial, antioxidant, and antiproliferative activity, which may, alone or in combination with other substances, potentially be used for the development of new drugs. However, their chemical variability, depending on the species, varieties, or geographical origin (among other factors) determines different bioactivities that need to be evaluated. Methods: The antioxidant activity of Corymbia citriodora and eight Eucalyptus species EOs was determined using two different methods: the scavenging ability of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+•) and peroxyl free radicals or oxygen radical absorbance capacity (ORAC). Antibacterial activity was evaluated using the microorganisms Streptococcus pneumoniae (strains D39 and TIGR4), and Haemophilus influenza (strain DSM 9999). The essential oils’ minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was assessed using a microdilution method. The antiproliferative activity was determined using the THP-1 cell line (human acute monocytic leukaemia) with methylthiazolyldiphenyl-tetrazolium bromide assay (MTT). Results:
Corymbia citriodora and Eucalyptus viminalis EOs showed the highest ABTS and peroxyl free radical scavenging capacity. Eucalyptus globulus EO showed a high potential to treat Streptococcus pneumoniae infections. Haemophilus influenzae was the respiratory pathogen that showed the highest resistance to all EOs, including tea tree EO. After 96 h of incubation, at 25 μg/mL, Eucalyptus radiata and Eucalyptus viminalis EOs showed highest cytotoxic activity against the THP-1 cell line. Conclusions: Despite their specific bioactivities, no single EO showed simultaneously good antioxidant, antimicrobial, and antiproliferative activity.