2017
DOI: 10.3390/axioms6020009
|View full text |Cite
|
Sign up to set email alerts
|

Euclidean Algorithm for Extension of Symmetric Laurent Polynomial Matrix and Its Application in Construction of Multiband Symmetric Perfect Reconstruction Filter Bank

Abstract: Abstract:For a given pair of s-dimensional real Laurent polynomials ( a(z), b(z)), which has a certain type of symmetry and satisfies the dual condition b(z) T a(z) = 1, an s × s Laurent polynomial matrix A(z) (together with its inverse A −1 (z)) is called a symmetric Laurent polynomial matrix extension of the dual pair ( a(z), b(z)) if A(z) has similar symmetry, the inverse A −1 (Z) also is a Laurent polynomial matrix, the first column of A(z) is a(z) and the first row of A −1 (z) is ( b(z)) T . In this paper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?