2021
DOI: 10.48550/arxiv.2108.07202
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Euler characteristic of stable envelopes

Abstract: In this paper we prove a formula relating the equivariant Euler characteristic of K-theoretic stable envelopes to an object known as the index vertex for the cotangent bundle of the full flag variety. Our formula demonstrates that the index vertex is the power series expansion of a rational function. This result is a consequence of the 3d mirror self-symmetry of the variety considered here. In general, one expects an analogous result to hold for any two varieties related by 3d mirror symmetry.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?