We have examined the role of erbB-2 expression in the modulation of cellular toxicity to cisplatin. We have demonstrated that treatment of NIH3T3-erbB-2 cells, which overexpress the p185 erbB-2 product of the human erbB-2 gene, with a monoclonal antibody directed against the extracellular domain (TAb-250), results in enhanced cisplatin cytotoxicity. A similar enhancement was obtained when cells were exposed to herbimycin A and its analogue CP127 374, both of which inhibit tyrosine kinase activity. Using the host cell reactivation (HCR) of reporter gene expression from cisplatindamaged plasmid and unscheduled DNA synthesis (UDS) following cisplatin treatment of cells, we have found that modulation of erbB-2 by TAb-250 was associated with inhibition of DNA repair. TAb-250 alone, under conditions which modulate DNA repair, slightly reduces the S-phase of the cell cycle, while cisplatin induced arrest at S and G 2 phases. Combination of TAb-250 and cisplatin only slightly prevented cisplatin-induced S and G 2 blocks. Since the ras pathway is one of the major signaling components coupled to erbB-2, we have examined the role of ras in DNA repair regulation. Transient expression of a ras dominant negative mutant, Asn-17-ras H , prevents DNA repair modulation by TAb-250, suggesting that the erbB-2 receptor regulates DNA repair mechanism(s), at least in part, through ras-coupled pathway(s).