Diterpenes are a class of critical taxonomic markers of the Euphorbiaceae family, representing small compounds (eg, molecules) with a wide range of biological activities and multi-target therapeutic potential. Diterpenes can exert different activities, including antitumor and multi-drug resistance-reversing activities, and antiviral, immunomodulatory, and anti-inflammatory effects, mainly due to their great structural diversity. In particular, one polycyclic skeleton has been highlighted: ingenane. Besides this natural diterpene, promising polycyclic skeletons may be submitted to chemical modification—by in silico approaches, chemical reactions, or biotransformation—putatively providing more active analogs (eg, ingenol derivatives), which are currently under pre-clinical investigation. This review outlines the current mechanisms of action and potential therapeutic implications of ingenol diterpenes as small cancer molecules.