We consider differential Lyapunov and Riccati equations, and generalized versions thereof. Such equations arise in many different areas and are especially important within the field of optimal control. In order to approximate their solution, one may use several different kinds of numerical methods. Of these, splitting schemes are often a very competitive choice. In this article, we investigate the use of graphical processing units (GPUs) to parallelize such schemes and thereby further increase their effectiveness. According to our numerical experiments, large speed-ups are often observed for sufficiently large matrices. We also provide a comparison between different splitting strategies, demonstrating that splitting the equations into a moderate number of subproblems is generally optimal.