Stent implantation in bifurcated coronary lesions is technically challenging so that procedural refinements are continuously investigated. Novel procedure modeling and intracoronary imaging techniques may offer critical insights on stent deformations and stent-wall interactions during bifurcation stenting procedures. Thus, we assessed coronary bifurcation stenting techniques using multimodal imaging and 3D modeling in reanimated swine hearts. Harvested swine hearts were reanimated using Visible Heart® methodologies and (under standard fluoroscopic guidance) used to test 1-stent (provisional and inverted provisional) and 2-stent (culotte, TAP and DK-crush) techniques on bifurcations within various coronary vessels using commercially available devices. Intracoronary angioscopy and frequency-domain optical-coherence-tomography (OCT) were obtained during the procedures. 3D OCT reconstruction and micro-computed tomography 3D modeling (post heart fixations) were used to assess stent deformations and stent-wall interactions. We conducted multiple stenting procedures and collected unique endoscopic and OCT images (and subsequent computational models from micro-CT) to assess stent deformations and device/wall interactions during different steps of bifurcation stenting procedures. Endoscopy, micro-CT and virtual reality processing documented that different 1- and 2-stent techniques, practiced according to experts’ recommended steps, achieve optimal post-intervention stent conformation. As compared with intra-procedural endoscopy, software-generated 3D OCT images accurately depicted stent deformations during 1-stent techniques. On the opposite, during more complex 2-stent techniques, some defects were appreciated at 3D OCT reconstruction despite optimal 2D OCT images. This study provided unique insights regarding both stent deformations occurring in the course of bifurcation stenting and the efficacy of OCT to visualize them.