Poplar plantations are expanding worldwide but little is known about the hornet clearwing moth, Sesia apiformis, one of their most severe pests. Thirty‐two poplar plantations of I‐214 clone were sampled in Spain, according to a factorial design combining stand age, site condition and understorey management to investigate the main drivers of S. apiformis habitat selection at both tree and stand level. In each plantation, one pheromone trap was activated during the flight season to test the correlation between captures and percentage of attacked trees. The proportion of other poplar forests in surrounding landscapes was calculated and used as a covariate in predictive models of trap catches. There were significantly more attacked trees in older stands. In young stands, the percentage of infested trees increased with the percentage cover of understorey vegetation. There was no significant effect of site quality on the rate of infestation and no difference in tree height, diameter or crown condition between attacked and un‐attacked trees within each stand, suggesting that S. apiformis could behave as primary pest. We hypothesized that the critical stage in the life cycle of the moth was the first instar larvae, which may benefit from protection of deep bark cracks in older stands and understorey vegetation in younger stands. We observed a positive correlation between trap capture and percentage of attacked trees in a radius of 100 m around the trap. The regression of trap catches against percentage of attacked trees was improved when the area of other poplar plantations within a distance of 600 m was incorporated in the model. This suggests that surrounding poplar stands may act as sources of immigrating moths in monitored stands. Our findings confirm that S. apiformis should be considered as a potential threat to poplar plantations and that pheromone trapping provides a suitable monitoring tool.