Research Highlights: Urban ecosystems are claimed to be more invaded than natural vegetation. Despite numerous studies, the patterns of alien species occurrence in urban forests are rarely linked to invasion ecology hypotheses. Background and Objectives: We assumed that patterns of invasion level (i.e., neophyte richness) and neophyte ecological success (cover) are context-dependent, i.e., depend on the type of vegetation, and that hypotheses connected with empty niche and biotic acceptance will have the strongest support in urban forests. We also tested biotic resistance, habitat filtering, disturbance, resource availability, and environmental heterogeneity hypotheses. Materials and Methods: Using a random forest algorithm, we tested the importance of factors related to invasion ecology hypotheses in a dataset of urban forest vegetation plots (n = 120). We studied seven types of forest plant communities occurring in Poznań (W Poland) and we assessed the vegetation’s taxonomic and functional composition. Results: We found that models of alien species richness and cover explained 28.5% and 35.0% of variance, respectively. Vegetation type was of the highest importance in both cases, suggesting that the occurrence of alien plant species is context-dependent. Resource availability and disturbance ecological indicator values were also of high importance. Conclusions: Our study supported resource availability and habitat filtering hypotheses as explanations of the level of invasion and ecological success of alien species in an urban forest, with partial support for the disturbance hypothesis. Our study revealed that predictors of invasion level are context-dependent, as patterns of alien species richness and cover differed among vegetation types. We highlight context-dependence of alien species invasion patterns in different vegetation types due to the habitat-forming role of dominant tree species and different availability of resources and disturbance levels, as well as different pools of native species. Thus, prevention and management of biological invasions in urban forests should account for forest vegetation type.