Poly(decamethylene terephthalamide) (PA10T), a bio‐based high‐performance semi‐aromatic polyamide, has been commercialized in recent years. However, there still are some weaknesses restricting its application range, such as narrow melt processing window and low ductility. In this study, we chose dodecanedioic acid (a potential bio‐based raw material) as the comonomer to prepare copolyamides [poly(decamethylene terephthalamide/decamethylene dodecanediamide), PA10T/1012] for solving these problems. The basic properties of these copolyamides were characterized by viscosity measurement, Fourier transform infrared spectrometer, proton nuclear magnetic resonance, wide‐angle X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and tensile measurement. Results show that, compared to PA10T, PA10T/1012 exhibits wider melt processing window and more outstanding elongation at break. Meanwhile, PA10T/1012 is still qualified for high temperature resistant material. Furthermore, Tg, Td,5%, Td,10%, and Td,max of PA10T/1012 show a linear dependence on 1012 content, which is helpful to design new bio‐based copolyamides for meeting the needs of various occasions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46531.