Background
Mosquito population dynamics are driven by large-scale (e.g. climatological) and small-scale (e.g. ecological) factors. While these factors are known to independently influence mosquito populations, it remains uncertain how drivers that simultaneously operate under natural conditions interact to influence mosquito populations. We, therefore, developed a well-controlled outdoor experiment to assess the interactive effects of two ecological drivers, predation and nutrient availability, on mosquito life history traits under multiple temperature regimes.
Methods
We conducted a temperature-controlled mesocosm experiment in Kruger National Park, South Africa, with the yellow fever mosquito,
Aedes aegypti.
We investigated how larval survival, emergence and development rates were impacted by the presence of a locally-common invertebrate predator (backswimmers
Anisops varia
Fieber (Notonectidae: Hemiptera), nutrient availability (oligotrophic
vs
eutrophic, reflecting field conditions), water temperature, and interactions between each driver.
Results
We observed that the effects of predation and temperature both depended on eutrophication. Predation caused lower adult emergence in oligotrophic conditions but higher emergence under eutrophic conditions. Higher temperatures caused faster larval development rates in eutrophic but not oligotrophic conditions.
Conclusions
Our study shows that ecological bottom-up and top-down drivers strongly and interactively govern mosquito life history traits for
Ae. aegypti
populations. Specifically, we show that eutrophication can inversely affect predator–prey interactions and mediate the effect of temperature on mosquito survival and development rates. Hence, our results suggest that nutrient pollution can overrule biological constraints on natural mosquito populations and highlights the importance of studying multiple factors.
Electronic supplementary material
The online version of this article (10.1186/s13071-019-3431-x) contains supplementary material, which is available to authorized users.