2020
DOI: 10.18845/tm.v33i5.5071
|View full text |Cite
|
Sign up to set email alerts
|

Evaluando la Resiliencia de Modelos de Deep Learning

Abstract: Los modelos de Aprendizaje Profundo se han convertido en una valiosa herramienta para resolver problemas complejos en muchas áreas críticas. Es importante proveer confiabilidad en las salidas de la ejecución de estos modelos, aún si se producen fallos durante la ejecución. En este artículo presentamos la evaluación de la confiabilidad de tres modelos de aprendizaje profundo. Usamos un conjunto de datos de ImageNet y desarrollamos un inyector de fallos para realizar las pruebas. Los resultados muestran que entr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 4 publications
0
1
0
Order By: Relevance
“…2D image classification enables the examination of each tomography independently, regardless of its sequential series. DL applications have proven to be invaluable in addressing complex problems, and ensuring the reliability of evaluation results is of paramount importance [45] . It is crucial to recognize that achieving high accuracy in the overall results is not enough.…”
Section: Resultsmentioning
confidence: 99%
“…2D image classification enables the examination of each tomography independently, regardless of its sequential series. DL applications have proven to be invaluable in addressing complex problems, and ensuring the reliability of evaluation results is of paramount importance [45] . It is crucial to recognize that achieving high accuracy in the overall results is not enough.…”
Section: Resultsmentioning
confidence: 99%