2022
DOI: 10.24252/instek.v7i2.32659
|View full text |Cite
|
Sign up to set email alerts
|

Evaluasi Perbandingan Performansi LVQ 1, LVQ 2, Dan LVQ 3 Dalam Klasifikasi Jenis Kelamin Menggunakan Tulang Tengkorak

Abstract: Klasifikasi merupakan teknik pengelompokkan data sesuai dengan karakteristik data yang telah ditentukan. Hasil performansi akurasi dapat menjadi ukuran keakuratan metode yang digunakan dalam proses klasifikasi. Teknik pengambilan data yang tidak sesuai  dapat mengurangi hasil akurasi. Pada penelitian ini menggunakan metode Learning Vector Quantization (LVQ) 1, 2, dan 3 untuk melihat keakuratan metode klasifikasi dengan menggunakan teknik  pengambilan data sampling. Data yang digunakan merupakan data pengukuran… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 9 publications
0
3
0
Order By: Relevance
“…The results of the comparison of the two highest accuracy results in samples I -IX with GR 0.01 and without GR c. Best Accuracy Results of LVQ 1 with Gain Ratio with Default Threshold and Without Gain RasioThe best accuracy result obtained by LVQ1 using Gain Ratio with default threshold Weka(-1.7976931348623157E308) is with the first workflow. The following is the comparison result of LVQ 1 accuracy using Gain Ratio feature selection with threshold 0.01, which does not use feature selection in previous research[11]. In Figure4, the best accuracy comparison results are obtained in sample II using GR with a value of α = 0.1 which is 92.19%, while in previous research or without Gain Ratio only has the best result of 88.45% at α = 0.1.…”
mentioning
confidence: 90%
See 2 more Smart Citations
“…The results of the comparison of the two highest accuracy results in samples I -IX with GR 0.01 and without GR c. Best Accuracy Results of LVQ 1 with Gain Ratio with Default Threshold and Without Gain RasioThe best accuracy result obtained by LVQ1 using Gain Ratio with default threshold Weka(-1.7976931348623157E308) is with the first workflow. The following is the comparison result of LVQ 1 accuracy using Gain Ratio feature selection with threshold 0.01, which does not use feature selection in previous research[11]. In Figure4, the best accuracy comparison results are obtained in sample II using GR with a value of α = 0.1 which is 92.19%, while in previous research or without Gain Ratio only has the best result of 88.45% at α = 0.1.…”
mentioning
confidence: 90%
“…In this research applying the Min-Max normalization method. Normalization is done by mapping into numbers between 0 and 1 [11], [20].…”
Section: Data Normalizationmentioning
confidence: 99%
See 1 more Smart Citation