Leaf nitrogen concentration (LNC) is a major indicator in the estimation of the crop growth status which has been diffusely applied in remote sensing. Thus, it is important to accurately obtain LNC by using passive or active technology. Laser-induced fluorescence can be applied to monitor LNC in crops through analysing the changing of fluorescence spectral information. Thus, the performance of fluorescence spectrum (FS) and first-derivative fluorescence spectrum (FDFS) for paddy rice (Yangliangyou 6 and Manly Indica) LNC estimation was discussed, and then the proposed FS + FDFS was used to monitor LNC by multivariate analysis. The results showed that the difference between FS (
R
2
= 0.781, s.d. = 0.078) and FDFS (
R
2
= 0.779, s.d. = 0.097) for LNC estimation by using the artificial neural network is not obvious. The proposed FS + FDFS can improved the accuracy of LNC estimation to some extent (
R
2
= 0.813, s.d. = 0.051). Then, principal component analysis was used in FS and FDFS, and extracted the main fluorescence characteristics. The results indicated that the proposed FS + FDFS exhibited higher robustness and stability for LNC estimation (
R
2
= 0.851, s.d. = 0.032) than that only using FS (
R
2
= 0.815, s.d. = 0.059) or FDFS (
R
2
= 0.801, s.d. = 0.065).