2011
DOI: 10.17485/ijst/2011/v4i10.6
|View full text |Cite
|
Sign up to set email alerts
|

Evaluating and selecting supplier in textile industry using hierarchical fuzzy TOPSIS

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(7 citation statements)
references
References 32 publications
0
6
0
1
Order By: Relevance
“…The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Hwang and Yoon in 1981 with further developments by Yoon in 1987, and Hwang, Lai and Liu in 1993 [11]. This method considers three types of attributes or criteria  Qualitative benefit attributes/criteria  Quantitative benefit attributes  Cost attributes or criteria In this method, two artificial alternatives are hypothesized [12]:…”
Section: Design Of Research Methodologymentioning
confidence: 99%
“…The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Hwang and Yoon in 1981 with further developments by Yoon in 1987, and Hwang, Lai and Liu in 1993 [11]. This method considers three types of attributes or criteria  Qualitative benefit attributes/criteria  Quantitative benefit attributes  Cost attributes or criteria In this method, two artificial alternatives are hypothesized [12]:…”
Section: Design Of Research Methodologymentioning
confidence: 99%
“…Literatürde yapılan çalışmalar incelendiğinde birbirinden farklı pek çok seçim kriterinin kullanıldığı görülmektedir. Bu kriterler; kalite, maliyet, teslim süresi (Öztürk, 2019), esneklik, güvenilirlik, fiyat, mali durum, coğrafi konum, teknik kapasite, garanti politikaları (K. Kara, Koleoglu, & Gurol, 2016), teslimat güvencesi, üretim kapasitesi, çevre yönetim planı, taşıma koşulları (Karami, Ghasemy Yaghin & Mousazadegan, 2021), iyileştirme programı, teknoloji kapasitesi (Celik, Yucesan & Gul, 2021), yenilik (Köprülü & Albayrakoğlu, 2007), firma itibarı (Cebeci, 2009), ikili ilişkiler, tam zamanında teslimat (Nong & Ho, 2019), hata oranı, ticaret kısıtlaması, kapasite, stok durumu, müşteri hizmetleri (Zarbini-Sydani, Karbasi, & Atef-Yekta, 2011), tecrübe (Yücenur, Vayvay, & Demirel, 2011), gelecek stratejisi (Ünal & Güner, 2009), satış sonrası servis (Nong & Ho, 2019), ürün yelpazesi (Stojanov & Ding, 2015), servis kalitesi, müşteri memnuniyeti (Li, Diabat & Lu, 2020), bilgi paylaşımı, pazarlık edilebilirlik (Chan & Chan, 2010), tedarikçi performansı (Paksoy & Güleş, 2006), işlevsellik (Cebeci, 2009), uygulama yaklaşımı, müşteri odaklılık (Ünal & Güner, 2009), geçmiş performans (Amindoust & Saghafinia, 2017), paketleme performansı (Ayyıldız & Çetin Demirel, 2010), kalite sertifikasyonu, ham madde durumu (Chan & Chan, 2010), yönetim sistemi (Güngör, Coşkun, Durur, & Gören, 2010), çözüm odaklılık (Güneri, Ertay, & Yücel, 2011), teslimat miktarı (İ. Kara & Ecer, 2016), stok düzeyinin düşürülmesi (Kumar, Singh, Singh, & Seema, 2013), tam zamanlı üretim, ülkenin politik durumu, döviz durumu (Karami, Ghasemy Yaghin & Mousazadegan, 2021), uzlaşma yeteneği, renk tonu özelliği, mesafe (Paksoy & Güleş, 2006), destek, örgütsel güvenilirlik (Ünal & Güner, 2009), kullanım kola...…”
Section: Li̇teratür Taramasiunclassified
“…The purpose of hierarchical fuzzy TOPSSIS is not only to overcome the fuzziness of information of decision maker but can also provide accurate criterion weight. Besides that, there are several advantages of Hierarchical Fuzzy TOPSIS against classical TOPSIS and fuzzy TOPSIS as highlighted by (Zarbini-Sydani et al, 2011) (Table 3). This comparison shows the Hierarchical Fuzzy TOPSIS offers a more systematic, effective, and accurate evaluation for uncertainty decision under fuzzy environment.…”
Section: Scalementioning
confidence: 99%