2020
DOI: 10.21203/rs.3.rs-112880/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Evaluating Deep Learning EEG-Based Anxiety Classification in Adolescents with Autism for Breathing Entrainment BCI

Abstract: Anxiety is one of the most common comorbidities in youth with autism spectrum disorder (ASD), severely limiting academic opportunities and overall quality of life. In the present study, we compared several machine learning classifiers, namely support vector machine (SVM) and deep learning methods, in order to evaluate the feasibility of an EEG-based BCI for the real-time assessment and mitigation of anxiety through a closed-loop adaptation of respiration entrainment. We trained a total of eleven subject-depend… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 69 publications
(91 reference statements)
0
3
0
1
Order By: Relevance
“…We looked at numerous descriptive dimensions to investigate this question: the number of participants, the amount of EEG data collected, and the task of the datasets. There are few studies that make use of their own collected datasets (Tang et al, 2017 ; Vilamala et al, 2017 ; Antoniades et al, 2018 ; Aznan et al, 2018 ; Behncke et al, 2018 ; El-Fiqi et al, 2018 ; Nguyen and Chung, 2018 ; Alazrai et al, 2019 ; Chen et al, 2019b ; Fahimi et al, 2019 ; Hussein et al, 2019 ; Zgallai et al, 2019 ; Gao et al, 2020b ; León et al, 2020 ; Maiorana, 2020 ; Penchina et al, 2020 ; Tortora et al, 2020 ; Atilla and Alimardani, 2021 ; Cai et al, 2021 ; Cho et al, 2021 ; Mai et al, 2021 ; Mammone et al, 2021 ; Petoku and Capi, 2021 ; Reddy et al, 2021 ; Shoeibi et al, 2021 ; Sundaresan et al, 2021 ; Ak et al, 2022 ). However, most of the deep learning studies have been conducted based on publicly available EEG datasets, such as:…”
Section: Utilizing Deep Learning In Eeg-based Bcimentioning
confidence: 99%
See 2 more Smart Citations
“…We looked at numerous descriptive dimensions to investigate this question: the number of participants, the amount of EEG data collected, and the task of the datasets. There are few studies that make use of their own collected datasets (Tang et al, 2017 ; Vilamala et al, 2017 ; Antoniades et al, 2018 ; Aznan et al, 2018 ; Behncke et al, 2018 ; El-Fiqi et al, 2018 ; Nguyen and Chung, 2018 ; Alazrai et al, 2019 ; Chen et al, 2019b ; Fahimi et al, 2019 ; Hussein et al, 2019 ; Zgallai et al, 2019 ; Gao et al, 2020b ; León et al, 2020 ; Maiorana, 2020 ; Penchina et al, 2020 ; Tortora et al, 2020 ; Atilla and Alimardani, 2021 ; Cai et al, 2021 ; Cho et al, 2021 ; Mai et al, 2021 ; Mammone et al, 2021 ; Petoku and Capi, 2021 ; Reddy et al, 2021 ; Shoeibi et al, 2021 ; Sundaresan et al, 2021 ; Ak et al, 2022 ). However, most of the deep learning studies have been conducted based on publicly available EEG datasets, such as:…”
Section: Utilizing Deep Learning In Eeg-based Bcimentioning
confidence: 99%
“…Long short-term memory (LSTM) (Zeng et al, 2018 ; Fares et al, 2019 ; Hussein et al, 2019 ; Puengdang et al, 2019 ; Saha et al, 2019 ; Chakladar et al, 2020 ; Penchina et al, 2020 ; Rammy et al, 2020 ; Tortora et al, 2020 ; Cho et al, 2021 ; Shoeibi et al, 2021 ),…”
Section: Utilizing Deep Learning In Eeg-based Bcimentioning
confidence: 99%
See 1 more Smart Citation
“…EEG verileri ile epilepsi, otizm, parkinson gibi birçok nörolojik rahatsızlığın tespiti mümkündür. Nörolojik rahatsızlıkların otomatik teşhisi ile ilgili birçok çalışma mevcuttur (Brian et al, 2021;Shi, Wang, Wang, Liu, & Yan, 2019;Xu et al, 2020). Epilepsi tespitinde kullanılmak üzere birçok açık kaynak veri seti mevcuttur (Siddiqui, Morales-Menendez, Huang, & Hussain, 2020).…”
Section: Introductionunclassified