Evaluating Hybrid Neural Network Architectures for Predicting Sleep Disorders From Structured Data
Gregorius Airlangga
Abstract:The accurate diagnosis of sleep disorders is crucial for effective treatment and management, yet current methods often rely on subjective assessments and are not always reliable. This research examines the efficacy of various neural network architectures, including dense networks, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and innovative hybrid models, in predicting sleep disorders from structured health data. Our study focuses on comparing the performance of these models using met… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.