Roots strongly influence the growth and yield of field crops. We characterized root morphological traits of 10 winter wheat varieties in order to determine the extent they were influenced by the environments and impacted grain yield under two irrigation regimes at Bushland (a cooler, drier site with clay loam soil) and Uvalde (a warmer, wetter site with clay soil) in Texas, USA, from 2015 to 2017. Major root traits, including root diameter, specific root length (SRL), root surface area (SSA), tissue mass density (TMD), root length density (RLD), and root weight density, were measured and related to one another and to grain yield. RLD of wheat decreased but SRL and SSA increased with soil depth. Irrigation was second to environment in affecting root traits. Compared with Uvalde, the environment of Bushland promoted deeper root growth, higher TMD, but reduced SRL and SSA. Water deficit inhibited RLD and root: shoot ratio at Bushland, but moderately promoted them at Uvalde. Both SRL and RLD were positively associated with grain yield, with the former relation stronger under drought. The dichotomy of "conservative" versus "acquisitive" root strategy partially explained the variations of root traits of winter wheat in contrasting environments.
K E Y W O R D Sdrought stress, irrigation management, root economic spectrum, site, soil-plant interaction, varieties