2022
DOI: 10.1038/s41598-022-12270-w
|View full text |Cite
|
Sign up to set email alerts
|

Evaluating machine learning classifiers for glaucoma referral decision support in primary care settings

Abstract: Several artificial intelligence algorithms have been proposed to help diagnose glaucoma by analyzing the functional and/or structural changes in the eye. These algorithms require carefully curated datasets with access to ocular images. In the current study, we have modeled and evaluated classifiers to predict self-reported glaucoma using a single, easily obtained ocular feature (intraocular pressure (IOP)) and non-ocular features (age, gender, race, body mass index, systolic and diastolic blood pressure, and c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 51 publications
0
0
0
Order By: Relevance