Background
The COVID-19 pandemic necessitated “going remote” with the delivery, support, and assessment of a study intervention targeting older adults enrolled in a clinical trial. While remotely delivering and assessing technology is not new, there are few methods available in the literature that are proven to be effective with diverse populations, and none for older adults specifically. Older adults comprise a diverse population, including in terms of their experience with and access to technology, making this a challenging endeavor.
Objective
Our objective was to remotely deliver and conduct usability testing for a mobile health (mHealth) technology intervention for older adult participants enrolled in a clinical trial of the technology. This paper describes the methodology used, its successes, and its limitations.
Methods
We developed a conceptual model for remote operations, called the Framework for Agile and Remote Operations (FAR Ops), that combined the general requirements for spaceflight operations with Agile project management processes to quickly respond to this challenge. Using this framework, we iteratively created care packages that differed in their contents based on participant needs and were sent to study participants to deliver the study intervention—a medication management app—and assess its usability. Usability data were collected using the System Usability Scale (SUS) and a novel usability questionnaire developed to collect more in-depth data.
Results
In the first 6 months of the project, we successfully delivered 21 care packages. We successfully designed and deployed a minimum viable product in less than 6 weeks, generally maintained a 2-week sprint cycle, and achieved a 40% to 50% return rate for both usability assessment instruments. We hypothesize that lack of engagement due to the pandemic and our use of asynchronous communication channels contributed to the return rate of usability assessments being lower than desired. We also provide general recommendations for performing remote usability testing with diverse populations based on the results of our work, including implementing screen sharing capabilities when possible, and determining participant preference for phone or email communications.
Conclusions
The FAR Ops model allowed our team to adopt remote operations for our mHealth trial in response to interruptions from the COVID-19 pandemic. This approach can be useful for other research or practice-based projects under similar circumstances or to improve efficiency, cost, effectiveness, and participant diversity in general. In addition to offering a replicable approach, this paper tells the often-untold story of practical challenges faced by mHealth projects and practical strategies used to address them.
Trial Registration
ClinicalTrials.gov NCT04121858; https://clinicaltrials.gov/ct2/show/NCT04121858