“…Robust statistics seek to provide methods that emulate popular statistical methods, but are not excessively affected by outliers or other small departures from model assumptions (Maronna et al, 2019). Robust statistics can be utilized to detect the outliers by searching for the model fitted by the majority of the data (Rousseeuw and Hubert, 2011;Feldotto et al, 2022). There are efficient robust estimators for a series of complex problems, including covariance estimation (Cheng et al, 2019;Diakonikolas et al, 2019a), sparse estimation tasks (Balakrishnan et al, 2017;Diakonikolas et al, 2019c;Cheng et al, 2022), learning graphical models (Cheng et al, 2018;Diakonikolas et al, 2021), linear regression (Klivans et al, 2018;Diakonikolas et al, 2019d;Pensia et al, 2020), stochastic optimization (Diakonikolas et al, 2019b;DeWolf et al, 2020;Prasad et al, 2020), etc.…”