Open-source artificial intelligence models are finding free application in various industries, including computer science and medicine. Their clinical potential, especially in assisting diagnosis and therapy, is the subject of increasingly intensive research. Due to the growing interest in AI for diagnostics, we conducted a study evaluating the abilities of AI models, including ChatGPT, Microsoft Bing, and Scholar AI, in classifying single-curve scoliosis based on radiological descriptions. Fifty-six posturographic images depicting single-curve scoliosis were selected and assessed by two independent neurosurgery specialists, who classified them as mild, moderate, or severe based on Cobb angles. Subsequently, descriptions were developed that accurately characterized the degree of spinal deformation, based on the measured values of Cobb angles. These descriptions were then provided to AI language models to assess their proficiency in diagnosing spinal pathologies. The artificial intelligence models conducted classification using the provided data. Our study also focused on identifying specific sources of information and criteria applied in their decision-making algorithms, aiming for a deeper understanding of the determinants influencing AI decision processes in scoliosis classification. The classification quality of the predictions was evaluated using performance evaluation metrics such as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and balanced accuracy. Our study strongly supported our hypothesis, showing that among four AI models, ChatGPT 4 and Scholar AI Premium excelled in classifying single-curve scoliosis with perfect sensitivity and specificity. These models demonstrated unmatched rater concordance and excellent performance metrics. In comparing real and AI-generated scoliosis classifications, they showed impeccable precision in all posturographic images, indicating total accuracy (1.0, MAE = 0.0) and remarkable inter-rater agreement, with a perfect Fleiss’ Kappa score. This was consistent across scoliosis cases with a Cobb’s angle range of 11–92 degrees. Despite high accuracy in classification, each model used an incorrect angular range for the mild stage of scoliosis. Our findings highlight the immense potential of AI in analyzing medical data sets. However, the diversity in competencies of AI models indicates the need for their further development to more effectively meet specific needs in clinical practice.