Abstract-This paper applies the recently introduced electrical engineering approach to investigate room temperature THz metal shielding, using the accurate classical relaxation-effect frequency dispersion model. It is shown that, with the simplest case of a uniform plane wave at normal incidence to an infinite single planar shield in air, all figure of merit parameters for the shield can be accurately characterized. The errors introduced by adopting the traditional and much simpler classical skin-effect model are also quantified. In addition, errors resulting from adopting well-established approximations have also been investigated and quantified. It is shown that the engineering approach allows analytical expressions to be greatly simplified and predictive equivalent transmission line models to be synthesized, to give a much deeper insight into the behaviour of room temperature THz metal shielding. For example, it is shown that figures of merit and associated errors (resulting from the use of different classical frequency dispersion models) become essentially thickness invariant when the physical thickness of the shield is greater than 3 normal skin depths.